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 a b s t r a c t

Human-in-the-loop reinforcement learning (HiL-RL) improves policy safety and learning efficiency by incorporat-
ing real-time human interventions and demonstration data. However, existing HiL-RL methods often suffer from 
inaccurate intervention timing and inefficient use of demonstration data. To address these issues, we propose a 
novel framework called HiRIL (Human-in-the-loop Risk-aware Imitation-enhanced Learning), which establishes 
a closed-loop learning mechanism that integrates risk-aware intervention triggering and imitation-based policy 
optimization under a dual-mode uncertainty metric. At the core of HiRIL is the Bayesian Implicit Quantile Net-
work (BIQN), which captures both epistemic and aleatoric uncertainty through Bayesian weight sampling and 
quantile-based return modeling. These uncertainties are combined to generate risk scores for state-action pairs, 
guiding when to trigger human intervention. To better utilize intervention data, HiRIL introduces a prioritized 
experience replay mechanism based on risk difference, which emphasizes human interventions that significantly 
reduce risk. During policy optimization, a local imitation loss is applied to clone human actions at intervention 
points, enabling risk-guided joint optimization. We conduct extensive experiments on the CARLA end-to-end au-
tonomous driving benchmark. Results show that HiRIL consistently outperforms baselines across multiple metrics 
and maintains strong robustness under perturbations and non-stationary human intervention.

1.  Introduction

Human-in-the-loop reinforcement learning (HiL-RL) has increasingly 
become a key technology for enhancing the applicability of reinforce-
ment learning in safety-critical scenarios in recent years (Retzlaff et al., 
2024; Yu & Chang, 2022; Zhang et al., 2021). Unlike traditional deep 
reinforcement learning, which relies solely on autonomous exploration, 
HiL-RL allows humans to intervene during training when the agent en-
gages in high-risk behaviors, providing high-value demonstration data 
through takeover actions (Wu et al., 2022a,b). In complex tasks with 
sparse rewards or high risks, this interactive paradigm not only reduces 
potential dangers during the agent’s exploration process but also lever-
ages human prior knowledge to improve learning efficiency and guide 
the learning direction. It offers a more reliable training framework for 
domains such as autonomous driving, robotic manipulation, and large-
scale model training and alignment (Lanzaro & Sayed, 2024; Liu, 2025; 
Tan et al., 2025).

Despite the significant potential of HiL-RL, existing research still 
faces two core limitations. On one hand, regarding the intervention 
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triggering mechanism, early methods rely on continuous human super-
vision to prevent unsafe actions through safety interruptions (Amodei 
et al., 2016) or manual takeovers (Saunders et al., 2017). However, 
these approaches are labor-intensive and difficult to scale. To reduce 
the human workload, some studies have attempted to enable agents to 
autonomously identify dangerous states by employing external risk pre-
dictors (Xie et al., 2022a), artificial potential fields (Huang et al., 2024), 
or single-type uncertainty measures (Singi et al., 2024) to trigger inter-
ventions. Nevertheless, these methods depend on additional modules 
or adopt single-mode uncertainty modeling, making it difficult to accu-
rately assess the risk level of the policy. This often leads to either ex-
cessive or insufficient human intervention. On the other hand, in terms 
of utilizing intervention data, although imitation learning methods can 
leverage demonstration data from interventions to accelerate training 
(Nair et al., 2018), large volumes of autonomously collected experience 
tend to dilute the quality of limited demonstrations, making it difficult 
for them to have a lasting impact on policy updates. Even with dual-
buffer experience replay mechanisms (Liu et al., 2025), the variation 
in demonstration quality is often overlooked, resulting in high-value 
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Fig. 1. Overall architecture of the HiRIL framework. The environment state is first fed into the actor network to generate an action, while the critic network, 
built upon BIQN, outputs the quantile return distribution for each state-action pair to perform dual uncertainty assessment. If the estimated uncertainty exceeds a 
predefined threshold, a human intervention is triggered and the human-provided action is executed; otherwise, the RL action is used. The environment then returns 
transition information, rewards, uncertainty values, and risk labels, which are recorded together with the state and action. These transitions are categorized into 
exploratory and intervention experiences and stored in a risk-difference-based prioritized replay buffer. This enables subsequent policy updates guided by risk-aware 
imitation learning.

intervention data not being fully utilized. In summary, current HiL-RL 
methods still suffer from two major bottlenecks: inaccurate intervention 
timing and inefficient utilization of intervention demonstrations.

To address the above challenges, this paper proposes a Human-in-
the-loop Risk-aware Imitation-enhanced Learning framework (HiRIL). 
This framework generates risk assessments through end-to-end uncer-
tainty modeling, enabling precise intervention triggering, and fully 
leverages human intervention data via risk-sensitive experience replay 
and imitation-enhanced learning. The overall architecture of the pro-
posed method is illustrated in Fig. 1. Specifically, we introduce the 
Bayesian Implicit Quantile Network (BIQN) as a risk scorer. BIQN es-
timates epistemic uncertainty through Bayesian sampling and captures 
aleatoric uncertainty via quantile-based return modeling, thereby gen-
erating precise risk assessments for each state-action pair that incorpo-
rate both types of uncertainty. Based on these risk scores, HiRIL proac-
tively triggers human takeovers in high-risk states and applies a one-
time penalty to guide the policy away from dangerous regions. During 
experience replay, we design a risk-difference-based prioritized replay 
mechanism to better utilize key demonstration segments where human 
actions significantly reduce risk. In the policy optimization phase, we 
incorporate a behavior cloning objective to improve learning efficiency.

This paper makes the following contributions:
1. A comprehensive risk-aware human-in-the-loop framework. We 
propose HiRIL, this framework integrates risk-triggered human in-
tervention, risk-difference-based prioritized replay, and imitation-
enhanced policy updates into a closed-loop training process, signifi-
cantly improving both safety and learning efficiency.

2. A Bayesian distributional risk estimator. We propose BIQN, 
which provides distributional representations for both epistemic and 
aleatoric uncertainties, and offers an unbiased estimation of the 

second-order moment of their joint distribution. This estimate is used 
as a risk metric to enable more precise triggering of human interven-
tions.

3. Systematic empirical validation in continuous control. On the 
CARLA end-to-end autonomous driving benchmark, HiRIL demon-
strates comprehensive advantages over existing baselines across all 
aspects, including both training performance and testing robustness, 
showcasing its exceptional overall capabilities.
The remainder of the paper is organized as follows: Section 2 reviews 

the related work. Section 3 provides the preliminaries. Section 4 intro-
duces the BIQN architecture and defines the risk estimation method. 
Section 5 presents the proposed HiRIL approach. Section 6 describes 
the experimental setup and analyzes the results. Section 7 concludes 
the paper.

2.  Related work

Human Intervention. Incorporating human intervention into rein-
forcement learning has been widely recognized as an effective approach 
to improving agent safety and training reliability (Tan et al., 2025; Xie 
et al., 2022b; Xu et al., 2022). Early methods largely relied on contin-
uous human supervision. For example, the safety interruption mech-
anism proposed in Amodei et al. (2016) allows real-time termination 
of dangerous behaviors, while Saunders et al. (2017) trains a super-
visory model through human interception of unsafe actions to reduce 
the frequency of future interventions. However, such methods require 
expert involvement throughout the training process, resulting in high 
labor costs. To alleviate this issue, some studies have explored mecha-
nisms that allow agents to actively request interventions. For instance,
Mandel et al. (2017) employs neural networks to identify high-risk 
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states, Xie et al. (2022a) detects irreversible states to request assistance, 
and Huang et al. (2024) uses artificial potential fields to determine the 
timing of interventions. While these approaches reduce human work-
load, they rely on external modules and suffer from limited generaliza-
tion capabilities. In recent years, some works have shifted toward lever-
aging the agent’s internal uncertainty estimates to develop end-to-end 
risk-aware intervention strategies without external structures. For exam-
ple, Singi et al. (2024) focuses on epistemic uncertainty, and Silva et al. 
(2020) targets aleatoric uncertainty. In contrast, this paper proposes a 
more refined dual-mode uncertainty modeling approach that combines 
Bayesian sampling with quantile-based return modeling, enabling more 
accurate risk quantification and more reliable intervention triggering.

Imitation Learning. Imitation learning improves the learning effi-
ciency and convergence speed of agents in environments with sparse 
rewards or high complexity by leveraging human intervention behav-
iors as demonstration data (Celemin et al., 2022; Hua et al., 2021; Zare 
et al., 2024). Representative methods such as DQfD (Hester et al., 2018) 
and GAIL (Ho & Ermon, 2016) can significantly boost performance in 
the early stages of training. However, these approaches mainly rely on 
action substitution or supervised pretraining and do not involve direct 
optimization of the policy structure itself. In recent years, some studies 
have explored deeper integration of human expertise by introducing be-
havior cloning objectives (Fujimoto & Gu, 2021) or modifying the policy 
function (Nair et al., 2018). Nevertheless, limited human demonstra-
tions are still prone to being diluted by large volumes of autonomously 
collected experience. To mitigate this issue, several works have pro-
posed dual experience replay mechanisms, storing human demonstra-
tions and agent-generated experiences in separate buffers (Liu et al., 
2025; Wang et al., 2018). While this improves the utilization effi-
ciency of demonstration data, it fails to account for the inherent vari-
ability in demonstration quality. Building upon the prioritized experi-
ence replay mechanism (Schaul et al., 2015), this study introduces a 
risk-difference term and combines penalty-based reward shaping with 
imitation-enhanced joint policy optimization, enabling more effective 
exploitation of high-value intervention data and enhancing overall pol-
icy performance.

Uncertainty in Deep Reinforcement Learning. Uncertainty mod-
eling in deep reinforcement learning primarily aims to optimize 
the exploration-exploitation trade-off and improve training efficiency. 
Existing research typically categorizes uncertainty into two types
(Gawlikowski et al., 2023): epistemic uncertainty, which arises from 
the agent’s lack of knowledge about unknown states, and aleatoric un-
certainty, which originates from the inherent stochasticity of the envi-
ronment. Epistemic uncertainty is commonly modeled using ensemble 
methods (e.g., Bootstrapped DQN Osband et al., 2016) and Bayesian ap-
proaches (van der Vaart et al., 2024). While ensemble methods heuristi-
cally estimate uncertainty, they often lack proper probabilistic calibra-
tion. In contrast, Bayesian methods introduce distributions over model 
parameters and offer stronger theoretical guarantees. Notably, Dropout 
(Hiraoka et al., 2021) can be interpreted as a form of Bayesian approxi-
mation. Due to its lower computational cost, it is widely used in practice. 
Aleatoric uncertainty is typically modeled using distributional reinforce-
ment learning, such as QR-DQN (Dabney et al., 2018b) and IQN (Dabney 
et al., 2018a). IQN employs implicit quantile regression, allowing for 
more flexible and accurate modeling of return distributions. Modeling 
a single type of uncertainty is often insufficient (Lockwood & Si, 2022); 
hence, joint modeling of both types has gained increasing attention. 
EQN (Hoel et al., 2023), for example, attempts to combine ensembles 
with distributional regression to capture both epistemic and aleatoric 
uncertainty. However, this approach yields biased estimates of variance 
(Clements et al., 2019). To address this limitation, we propose the BIQN, 
which integrates Bayesian inference with quantile-based modeling in a 
principled manner. BIQN provides a full distributional model that si-
multaneously captures both types of uncertainty, offering stronger rep-
resentation capabilities. Furthermore, this modeling approach enables 
unbiased variance estimation via Monte Carlo sampling.

3.  Preliminaries

In this section, we first introduce the notation and concepts of HiL-
RL, followed by the quantile-based methods for modeling aleatoric un-
certainty and the Bayesian approaches for modeling epistemic uncer-
tainty. The three components presented in this section collectively form 
the foundation of the proposed HiRIL method.

3.1.  Notation

We model the interaction between the RL agent and the environment 
as a Markov Decision Process (MDP) 𝑀 = (𝑆,𝐴,𝑅, 𝑃 , 𝜇0, 𝛾), where 𝑆 de-
notes the state space, 𝐴 denotes the action space, 𝑅 is the reward func-
tion, 𝑃  is the transition probability, 𝜇0 represents the initial state distri-
bution, and 𝛾 is the discount factor.In this paper, we adopt a human-in-
the-loop learning framework, where humans can proactively intervene 
to control agent.

Given the current state 𝑠𝑡 ∈ 𝑆, the agent samples an action 𝑎𝑅𝐿𝑡 ∈ 𝐴
from the policy 𝜋𝜙(𝑠𝑡), while a human can override this action with a 
human action 𝑎𝐻𝑡 ∈ 𝐴. Therefore, the executed action is defined as:
𝑎𝑡 = Δ𝑡𝑎

𝐻
𝑡 + (1 − Δ𝑡)𝑎𝑅𝐿𝑡 ,

where Δ𝑡 is a binary indicator function of human intervention.

3.2.  IQN: Implicit quantile networks

Unlike traditional Q-learning, IQN (Dabney et al., 2018a) belong to a 
class of distributional RL methods. They focus on the inherent random-
ness of returns within the RL framework and aim to model the distribu-
tion of returns. IQN models return values through implicit quantiles:
𝑍𝜏 ∶= 𝐹−1

𝑍 (𝜏) = 𝑓𝜏 (𝑠, 𝑎). (1)

where 𝑍𝜏 represents the return’s quantile function evaluated at 𝜏 ∼
 (0, 1).

The training objective of IQN is to reparameterize samples from the 
base distribution to match the corresponding quantiles of the target dis-
tribution. For two quantile samples 𝜏, 𝜏′ ∼  (0, 1), the sampled temporal 
difference (TD) error at step 𝑡 is:
𝛿𝜏,𝜏

′

𝑡 = 𝑟𝑡 + 𝛾𝑍𝜏′
(

𝑠𝑡+1, 𝜋
∗(𝑠𝑡+1); 𝜃−

)

−𝑍𝜏 (𝑠𝑡, 𝑎𝑡; 𝜃) (2)

where 𝜋∗(𝑠) = argmax𝑎 𝑄(𝑠, 𝑎), the sample-based 𝑄𝜋 (𝑠𝑡, 𝑎𝑡) estimation is 
calculated by drawing 𝐾𝜏 samples from 𝜏 ∼  (0, 1):

𝑄̃𝜋 (𝑠, 𝑎) = 1
𝐾𝜏

𝐾𝜏
∑

𝑘=1
𝑍𝜏𝑘 (𝑠, 𝑎; 𝜃) (3)

The loss function of IQN is defined as:

𝐼𝑄𝑁 (𝜃) = 𝔼𝑠𝑡∼

[

1
𝑁

∑

𝑖,𝑗
𝜌𝜅

(

𝛿
𝜏𝑖 ,𝜏′𝑗
𝑡

)

]

(4)

where 𝜌𝜅 is the Huber quantile regression loss, and  is the replay buffer 
that stores training data.

3.3.  BNN: Bayesian neural network

Bayesian Neural Networks (BNN) (Goan & Fookes, 2020) treat 
weights and biases as random variables and sample the network’s 
weights from a posterior distribution 𝑝(𝜃|), where  = (𝑋, 𝑌 ) repre-
sents the experiences collected by the agent, 𝑋 = (𝑥𝑖)𝑀𝑖=1 is the input set, 
and 𝑌 = (𝑦𝑖)𝑀𝑖=1 is the target label set. Since 𝑝(𝜃|) is difficult to com-
pute, a variational distribution 𝑞(𝜃) is typically sampled to approximate 
it, i.e. maximizing the Evidence Lower Bound (ELBO):

𝐸𝐿𝐵𝑂 = ∫ 𝑞(𝜃) log 𝑝(𝑌 ∣ 𝑋, 𝜃)𝑑𝜃 −𝐾𝐿(𝑞(𝜃)|𝑝(𝜃))

=

( 𝑀
∑

𝑖=1
∫ 𝑞(𝜃) log 𝑝

(

𝑦𝑖 ∣ 𝑥𝑖, 𝜃
)

𝑑𝜃

)

−𝐾𝐿(𝑞(𝜃)|𝑝(𝜃))
(5)
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4.  Distributional risk estimation via BIQN

This section introduces the BIQN model, which integrates IQN with 
BNN to construct a unified distributional representation of both epis-
temic and aleatoric uncertainties. Based on the resulting joint distribu-
tion, we further provide an unbiased estimation of its second-order mo-
ment, thereby offering a quantitative metric for risk assessment to trig-
ger human interventions and effectively leverage demonstration data.

4.1.  BIQN: Bayesian implicit quantile networks

In this section, we propose BIQN, a model that integrates the struc-
tures of IQN and BNN to simultaneously capture dual-mode uncertainty.

The key to constructing BIQN lies in addressing two fundamental 
challenges: the fusion at the representation level and the fusion at the 
optimization level. This requires designing a unified parameterized dis-
tribution to model the dual sources of randomness, and developing a 
joint loss function to align the training objectives of both components. 
However, given the existing forms of representation and loss functions 
in IQN and BNN, integrating them directly is nontrivial. To overcome 
this, we derive the distributional representation and corresponding loss 
structure of BNN in the context of DRL, enabling BNN to be naturally 
integrated into the IQN framework and thereby achieving unified mod-
eling and joint training.

When applying BNN to DRL, the input 𝑥𝑖 is a state-action pair (𝑠𝑖, 𝑎𝑖), 
and the output 𝑦𝑖 is an estimate of 𝑄(𝑠𝑖, 𝑎𝑖), and Q-value becomes a prob-
ability disrtibution:
𝑄(𝑠, 𝑎) = 𝑓 (𝑠, 𝑎; 𝜃), 𝜃 ∼ 𝑞(𝜃) (6)

When training by minimizing the squared error, it is typically assumed 
that the error around the target value follows a Gaussian distribution. 
Under this assumption, the posterior distribution over the parameters in 
Eq. (5) can be written as:

log 𝑝
(

𝑦𝑖 ∣ 𝑥𝑖; 𝜃
)

=
−
(

𝛿𝑡(𝜃𝑖)
)2

2𝜎2
+ 𝐶(𝜎) (7)

where 𝐶(𝜎) = − log
√

(2𝜋)𝜎 is constant, 𝛿𝑡(𝜃) is TD error at step 𝑡:
𝛿𝑡(𝜃) = 𝑟𝑡 + 𝛾𝑓

(

𝑠𝑡+1, 𝜋
∗(𝑠𝑡+1); 𝜃−

)

− 𝑓 (𝑠𝑡, 𝑎𝑡; 𝜃), 𝜃 ∼ 𝑞(𝜃) (8)

the sample-based 𝑄𝜋 (𝑠𝑡, 𝑎𝑡) estimation is calculated by drawing 𝐾𝜃 sam-
ples from 𝜃 ∼ 𝑞(𝜃):

𝑄̃𝜋 (𝑠, 𝑎) = 1
𝐾𝜃

𝐾𝜃
∑

𝑘′=1

𝑓 (𝑠, 𝑎; 𝜃𝑘′ ) (9)

We approximate the integral for each example with a Monte Carlo esti-
mate by sampling a 𝜃𝑖 ∼ 𝑞(𝜃):

𝐸𝐿𝐵𝑂 ≈ 𝐶1

( 𝑀
∑

𝑖=1
−
(

𝛿𝑡(𝜃𝑖)
)2
)

−𝐾𝐿(𝑞(𝜃)|𝑝(𝜃)) (10)

where 𝐶1 = 2𝜎2 is constant. Since DRL agents are typically trained over 
millions of interactions, we assume that the log-likelihood term domi-
nates in the ELBO. Therefore, maximizing Eq. (10) is equivalently writ-
ten as minimizing the following loss function:

𝐵𝑁𝑁 (𝜃̂𝑖) = 𝔼𝑠𝑡∼

[

1
𝑀

∑

𝑖

(

𝛿𝑡(𝜃̂𝑖)
)2
]

(11)

each sample 𝜃̂𝑖 ∼  (𝜇,Σ) is obtained by reparameterizing the network 
parameters: 𝜃̂𝑖 = 𝜇 + Σ𝜖, where 𝜖 ∼  (0, 𝐼).

Building on this, we can clearly derive the overall learning proce-
dure of BIQN. Specifically, combine Eqs. (1) and (6), BIQN uses the 
conditional quantile function 𝑓𝜏 (𝑠, 𝑎; 𝜃) to represent the return variable 
under quantile point 𝜏 ∼  (0, 1) and network parameters 𝜃 ∼ 𝑞(𝜃):

𝑍𝜃,𝜏 (𝑠, 𝑎) = 𝑓𝜏 (𝑠, 𝑎; 𝜃), 𝜏 ∼  (0, 1), 𝜃 ∼ 𝑞(𝜃) (12)

Combine Eqs. (2) and (8), the TD error is used to update the target 
value, defined as:
𝛿𝜏,𝜏

′

𝑡 (𝜃) = 𝑟𝑡 + 𝛾𝑍𝜃,𝜏′
(

𝑠𝑡+1, 𝜋
∗(𝑠𝑡+1

))

−𝑍𝜃,𝜏
(

𝑠𝑡, 𝑎𝑡
)

(13)

where 𝜋∗(𝑠𝑡) = argmax𝑎 𝑄(𝑠𝑡, 𝑎𝑡) is the optimal policy.
Combine Eqs. (3) and (9), the sample-based 𝑄𝜋 (𝑠𝑡, 𝑎𝑡) estimation is 

calculated by drawing 𝐾𝜏 ×𝐾𝜃 samples from 𝜏 ∼  (0, 1), 𝜃 ∼ 𝑞(𝜃) as fol-
lows:

𝑄̃𝜋 (𝑠, 𝑎) = 1
𝐾𝜃

1
𝐾𝜏

𝐾𝜃
∑

𝑘′=1

𝐾𝜏
∑

𝑗=1
𝑍𝜃

𝑘′
,𝜏𝑘 (𝑠, 𝑎) (14)

Combine Eqs. (4) and (11), the training objective of BIQN is to min-
imize the Huber quantile loss under double sampling, defined as:

𝐵𝐼𝑄𝑁 (𝜃) = 𝔼𝑠𝑡∼

[

1
𝑀

1
𝑁

∑

𝑚

∑

𝑖,𝑗
𝜌𝜅

(

𝛿
𝜏𝑖 ,𝜏′𝑗
𝑡 (𝜃̂𝑚)

)

]

(15)

where  is the replay buffer that stores training data, each 𝜃̂𝑚 is sampled 
by 𝑞(𝜃) =  (𝜇,Σ).

4.2.  Risk estimation: Metric of dual-mode uncertainty

In this section, we present the quantification and unbiased estima-
tion of dual-mode uncertainty in BIQN.

We define the dual-mode uncertainty of a state-action pair (𝑠, 𝑎) as 
the variance of the stochastic return variable 𝑍𝜃,𝜏 (𝑠, 𝑎), which is gener-
ated by the proposed BIQN. In BIQN, the return variable is modeled as a 
function of both parameter uncertainty 𝜃 ∼ 𝑞(𝜃) and quantile variability 
𝜏 ∼  (0, 1). Formally, the dual-mode uncertainty is defined as:
𝐷𝑈 (𝑠, 𝑎) ∶= Var[𝑍𝜃,𝜏 ] = 𝔼[𝑍𝑇

𝜃,𝜏𝑍𝜃,𝜏 ] − 𝔼[𝑍𝜃,𝜏 ]𝑇𝔼[𝑍𝜃,𝜏 ] (16)

We model the stochastic return distribution 𝑝(𝑍𝜃,𝜏 |𝑠, 𝑎) as:

𝑝(𝑍𝜃,𝜏 |𝑠, 𝑎) = ∫ 𝑝(𝑍𝜃,𝜏 , 𝜃, 𝜏|𝑠, 𝑎)𝑞(𝜃)𝑝(𝜏)𝑑𝜃𝑑𝜏 (17)

which:
⎧

⎪

⎨

⎪

⎩

𝑝(𝑍𝜃,𝜏 , 𝜃, 𝜏|𝑠, 𝑎) =  (𝑓𝜏 (𝑠, 𝑎; 𝜃), 𝜎𝑧).
𝑞(𝜃) =  (𝜇,

∑

)
𝑝(𝜏) =  (0, 1)

(18)

where 𝜎𝑧 reflects the intensity of noise perturbation on the neural net-
work output 𝑓𝜏 (𝑠, 𝑎; 𝜃).

The expected return is computed by marginalizing over 𝜃 and 𝜏:

𝐸[𝑍𝜃,𝜏 ] = ∫ 𝑍𝜃,𝜏𝑝(𝑍𝜃,𝜏 |𝑠, 𝑎)𝑑𝑍𝜃,𝜏

= ∫ 𝑍𝜃,𝜏 ∫ ∫ 𝑝(𝑍𝜃,𝜏 , 𝜃, 𝜏|𝑠, 𝑎)𝑞(𝜃)𝑝(𝜏)𝑑𝜃𝑑𝜏

= ∫ ∫ ∫ 𝑍𝜃,𝜏 (𝑓𝜏 (𝑠, 𝑎; 𝜃), 𝜎𝑧)𝑑𝑍𝜃,𝜏𝑞(𝜃)𝑝(𝜏)𝑑𝜃𝑑𝜏

= ∫ ∫ 𝑓𝜏 (𝑠, 𝑎; 𝜃)𝑞(𝜃)𝑝(𝜏)𝑑𝜃𝑑𝜏

≈ 1
𝑀

1
𝑀 ′

𝑀
∑

𝑖=1

𝑀 ′
∑

𝑗=1
𝑓𝜏𝑗 (𝑠, 𝑎; 𝜃𝑖)

(19)

To quantify the spread of the return distribution, we compute the 
second-order moment:
𝐸[𝑍𝑇

𝜃,𝜏𝑍𝜃,𝜏 ]

= ∬ (∫ 𝑍𝑇
𝜃,𝜏𝑍𝜃,𝜏𝑝(𝑍𝜃,𝜏 , 𝜃, 𝜏|𝑠, 𝑎)𝑑𝑍𝜃,𝜏 )𝑞(𝜃)𝑝(𝜏)𝑑𝜃𝑑𝜏

= ∫ ∫ (𝑐𝑜𝑣[𝑍𝜃,𝜏 ] + 𝐸[𝑍𝜃,𝜏 ]𝑇𝐸[𝑍𝜃,𝜏 ])𝑞(𝜃)𝑝(𝜏)𝑑𝜃𝑑𝜏

= ∫ (𝜎𝑧 + 𝑓𝑇
𝜏 (𝑠, 𝑎, 𝜃)𝑓𝜏 (𝑠, 𝑎; 𝜃))𝑞(𝜃)𝑝(𝜏)𝑑𝜃𝑑𝜏.

≈ 𝜎𝑧 +
𝑀
∑

𝑖=1

𝑀 ′
∑

𝑗=1
𝑓𝑇
𝜏𝑗
(𝑠, 𝑎; 𝜃𝑖)𝑓𝜏𝑗 (𝑠, 𝑎; 𝜃𝑖)

(20)
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5.  HiRIL: Human-in-the-loop risk-aware imitation-enhanced 
learning

In this section, we propose a HiRIL method that integrates human 
guidance into risk-aware policy optimization. The method enhances the 
safety and efficiency of policy learning through two key modules: (1) a 
human intervention mechanism based on dual-mode uncertainty, which 
identifies high-risk states to trigger human takeover and uses reward 
shaping to guide the agent away from risky behaviors; and (2) a risk-
aware prioritized experience replay mechanism incorporating human 
demonstrations, which introduces the Temporal Difference Risk Differ-
ence (TDRD) to improve the utilization efficiency of critical experiences 
and jointly optimizes the policy with imitation learning objectives.

5.1.  Risk-aware human intervention

In this section, we present in detail the human-intervention-based 
Actor–Critic RL interaction mechanism and the associated reward shap-
ing techniques.

In standard RL, during interaction with the environment, the agent’s 
behavior policy 𝜋𝜙(𝑠𝑡) outputs actions to explore the environment. For 
Actor–Critic methods, this process can be expressed as
𝑎RL𝑡 = 𝜋𝜙(𝑠𝑡) + 𝜉𝑎 ⊙ 𝑎std𝑡 , (21)

where 𝑎std𝑡 ∈ ℝdim() is a training-related variable that scales the ex-
ploration noise, ⊙ denotes the Hadamard (element-wise) product, and 
𝜉𝑎 ∼ 

(

0, 𝐼dim()).
In order to ensure that human intervention is requested only when 

necessary, we design a risk-aware intervention mechanism based on 
dual-mode uncertainty estimation. Specifically, when the agent’s dual-
mode uncertainty estimate DU(𝑠𝑡, 𝑎𝑡) for the current state-action pair 
(𝑠𝑡, 𝑎𝑡) exceeds a preset threshold 𝜏risk , the current state is regarded as 
lying in a high-risk region and the system triggers human intervention; 
at this moment, full control authority is handed over to the human. The 
executed action is
𝑎𝑡 =

(

𝐼dim() − Δ𝑡
)

⋅ 𝑎RL𝑡 + Δ𝑡 ⋅ 𝑎
𝐻
𝑡 , (22)

where 𝑎𝐻𝑡  denotes the human control action, and Δ𝑡 ∈ ℝdim() is the 
intervention function defined by the risk state:

Δ𝑡 =

{

𝐼dim(), if DU(𝑠𝑡, 𝑎RL𝑡 ) > 𝜏risk ,
𝟎dim(), otherwise.

(23)

Each interaction yields a transition tuple 𝜁 that, after the action is 
dispatched to the environment, is recorded and stored in the experience 
replay buffer . In particular, the actions produced by both the human 
policy and the RL policy are associated with a dual-mode uncertainty 
estimate 𝐷𝑈𝑡 and the intervention function Δ𝑡. Accordingly, the new 
transition tuple 𝜁𝑖 is defined as follows to distinguish human experience 
from ordinary RL experience:
𝜁𝑖 = (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1, 𝐷𝑈𝑖,Δ𝑖). (24)

Clearly, when an intervention occurs, the current state is high risk 
for the RL agent; in this context, the intervention event can be regarded 
as a negative signal from which the agent should learn to avoid the 
state. In reinforcement learning, the agent updates its value function 
and policy based on the reward obtained at each interaction; therefore, 
the influence of human intervention can be encoded via reward shaping. 
Specifically, the post-intervention reward is defined as
𝑟shape𝑡 = 𝑟𝑡 + 𝑟p ⋅

[

(Δ𝑡 = 𝐈dim()) ∧ (Δ𝑡−1 = 𝟎dim())
]

, (25)

where 𝑟p is a coefficient that weights the intervention penalty. Note that 
the shaping penalty is applied only at the onset of intervention, i.e., 
(Δ𝑡 = 𝐈dim()) ∧ (Δ𝑡−1 = 𝟎dim()), because subsequent states are governed 
by human actions and should no longer be treated as high-risk for the 
RL agent.

5.2.  Risk-aware prioritized experience replay and imitation learning

In this section, we propose a risk-aware prioritized experience replay 
mechanism and imitation learning objectives tailored to human demon-
strations.

In RL, data are typically sampled from the replay buffer uniformly; 
however, this treats every sample equally and cannot fully exploit the 
value of different experiences. A more effective method is Prioritized 
Experience Replay (PER), which assumes that experiences in the buffer 
 follow a certain distribution  , whose probability mass function is 
defined as:

𝑝𝐽 (𝑖) =
𝑘𝑖

∑

𝑖∈ 𝑘𝑖
. (26)

The priority is determined by the temporal-difference (TD) error 𝛿𝑇𝐷𝑖 , 
which is computed as follows:
𝑘𝑖 =

|

|

|

𝛿𝑇𝐷𝑖
|

|

|

+ 𝜀

= |

|

|

𝑟𝑖 + 𝛾 ⋅𝑄
(

𝑠𝑖+1, 𝜋𝜙(𝑠𝑖+1); 𝜃
)

−𝑄
(

𝑠𝑖, 𝑎𝑖; 𝜃
)

|

|

|

+ 𝜀
(27)

where 𝜀 is a small positive constant to guarantee the probability larger 
than zero.This formulation indicates that higher state risk yields a lower 
base priority, thereby reducing the sampling frequency of high-risk data.

When the experience comes from human demonstrations, we aug-
ment the sampling priority defined in Eq. (29) with an exponential term 
representing the difference between the DU values of the human ac-
tion and the RL action. This additional component is referred to as the 
Risk Difference (RD) term, which indicates that when the human action 
significantly reduces risk, the priority of the corresponding sample is 
increased. The improved priority is then defined as
𝑘𝐻𝑖 = |

|

|

𝛿𝑇𝐷𝑖
|

|

|

+ 𝜀 + (Δ𝑖 = 𝐈dim()) ⋅ exp
[

DU(𝑠𝑖, 𝑎RL𝑖 ) − DU(𝑠𝑖, 𝑎𝐻𝑖 )
]

. (28)

We refer to the aforementioned mechanism as TDRD.
Assume that the replay buffer  is divided into RL experiences and 

human experiences, denoted as 1 ∪2. The critic loss is defined as

critic(𝜃) = 𝔼1

[

1
𝑀

1
𝑁

∑

𝑚

∑

𝑖,𝑗
𝜌𝜅

(

𝛿
𝜏𝑖 ,𝜏′𝑗 ,1
𝑡 (𝜃̂𝑚)

)

]

+ 𝔼2

[

1
𝑀

1
𝑁

∑

𝑚

∑

𝑖,𝑗
𝜌𝜅

(

𝛿
𝜏𝑖 ,𝜏′𝑗 ,2
𝑡 (𝜃̂𝑚)

)

]

,

(29)

where

𝛿𝜏,𝜏
′ ,1

𝑡 (𝜃) = 𝑟𝑡 + 𝛾𝑍𝜃,𝜏′
(

𝑠𝑡+1, 𝜋
∗(𝑠𝑡+1)

)

−𝑍𝜃,𝜏
(

𝑠𝑡, 𝑎
𝑅𝐿
𝑡

)

, (30)

𝛿𝜏,𝜏
′ ,2

𝑡 (𝜃) = 𝑟𝑡 + 𝛾𝑍𝜃,𝜏′
(

𝑠𝑡+1, 𝜋
∗(𝑠𝑡+1)

)

−𝑍𝜃,𝜏
(

𝑠𝑡, 𝑎
𝐻
𝑡
)

. (31)

The actor loss is defined as:
Actor(𝜙) = 𝔼1

[

−𝑄̃(𝑠𝑡, 𝜋𝜙(𝑠𝑡))
]

+ 𝜆 ⋅ 𝔼2

[

‖𝜋𝜙(𝑠𝑡) − 𝑎𝐻𝑡 ‖

2]. (32)

where 𝜆 is a manually determined constant that weighs the importance 
of behavior cloning.

In summary, the complete form of the algorithm is presented in
Algorithm 1.

6.  Simulation

We conduct experiments to investigate the following questions: (1) 
Whether HiRIL can further improve the efficiency and performance of 
reinforcement learning during the training phase compared to baseline 
methods; (2) Whether agents trained with HiRIL exhibit enhanced ro-
bustness and adaptability during the testing phase compared to base-
lines; (3) Whether the mechanism design of HiRIL is rational and effec-
tive. For Question (1), we comprehensively compare the training effi-
ciency and performance of different algorithms under the same hyper-
parameter settings using multiple evaluation metrics. For Question (2), 
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Algorithm 1 HiRIL algorithm.
1: Initialize: Replay buffer ; Parameters 𝜃 = (𝜇,Σ) and 𝜙 randomly; 
Threshold 𝜏risk for intervention triggering.

2: for each episode do
3:  𝑠0 ← initial state
4:  for 𝑡 = 0 to 𝑇  do
5:  𝑎RL𝑡 ← 𝜋𝜙(𝑠𝑡) + 𝜖;
6:  Estimate DU(𝑠𝑡, 𝑎RL𝑡 ) using Eq. (16);
7:  if DU(𝑠𝑡, 𝑎RL𝑡 ) > 𝜏risk then
8:  Adopt human action 𝑎𝑡 = 𝑎H𝑡 , set Δ𝑡 = 𝐼 ;
9:  else
10:  Select RL action 𝑎𝑡 = 𝑎RL𝑡 , set Δ𝑡 = 0;
11:  Execute 𝑎𝑡, observe 𝑟𝑡 and new state 𝑠𝑡+1;
12:  Shape reward 𝑟𝑡 = 𝑟𝑡 + 𝑟p ⋅

[

(Δ𝑡 = 𝐈) ∧ (Δ𝑡−1 = 𝟎)
]

;
13:  Store tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝐷𝑈𝑡,Δ𝑡) in ;
14:  Sample 𝑁 tuples from  with probability 𝑝(𝑖) = 𝑘𝑖

∑

𝑖∈ 𝑘𝑖
;

15:  Update priority by Eq. (28);
16:  /* Critic Update */
17:  Compute critic loss Critic(𝜃) using Eq. (29);
18:  Update 𝜃 via gradient descent;
19:  /* Actor Update */
20:  Estimate 𝑄̂(𝑠, 𝑎) using Eq. (14);
21:  Compute actor loss Actor(𝜙) using Eq. (32);
22:  Update 𝜙 via gradient descent;

we evaluate the agents from three perspectives: adaptability to differ-
ent environments, robustness to non-stationary human guidance, and 
robustness to control input noise. For Question (3), we mainly verify 
whether the HiRIL mechanism can effectively trigger interventions and 
reduce the frequency of human interventions, and we conduct a contri-
bution analysis of each module.

6.1.  Environment setup

As with most RL algorithms, the proposed HiRIL can be broadly 
applied to decision-making and control tasks with continuous action 
spaces. In this paper, we focus on end-to-end autonomous driving as the 
research domain and adopt the CARLA simulator as the experimental 
platform, since CARLA can generate an unlimited number of scenarios 
across diverse road networks and traffic flows.

We set up six representative scenarios: one for training the proposed 
method and the remaining five for testing and evaluating its perfor-
mance. Visualizations of all scenarios are provided in Fig. 2. In the train-
ing scenario, seven surrounding vehicles (all sedans) are placed around 
the ego vehicle. Their initial speeds range between [3, 5] m/s, and subse-
quent acceleration is governed by the IDM model (Treiber et al., 2000). 
The initial positions of all vehicles are fixed at the beginning of each 
training episode. The differences between training and testing scenarios 
lie in the number of surrounding vehicles, their initial position distri-
butions, and vehicle types. In these scenarios, the task objective is to 
drive the autonomous vehicle safely to its destination while avoiding 
hazardous behaviors such as collisions with other vehicles or lane de-
partures. Reward shaping includes dense rewards proportional to lateral 
control stability, a terminal reward when the ego vehicle successfully 
reaches the destination, and penalties for collisions or lane departures.

We adopt state-of-the-art algorithms in the field of HiL-RL as base-
lines and compare their performance with our proposed algorithm: IARL
(Wang et al., 2018): This is a representative method that combines re-
inforcement learning with imitation learning. Specifically, the RL pol-
icy network is modified by incorporating a behavior cloning objective 
to adapt to human demonstration actions. Once human intervention 
occurs, human demonstrations replace RL exploratory actions, and a 
penalty signal is added to the reward. HULA (Singi et al., 2024): This 
is a representative method that combines reinforcement learning with 

Fig. 2. (a) Scenario 0: This scenario serves as the training scenario. (b) Sce-
nario 1: This scenario removes all surrounding traffic participants to evaluate 
the anti-overfitting capability of the generated driving policy. (c–f) Scenarios 
2–5: These scenarios are used to test the adaptability of the obtained policy in 
new situations not encountered during the training phase. Changes include the 
number of surrounding vehicles, initial positions, and vehicle types.

human intervention. It requests assistance from human experts by as-
sociating decision uncertainty with the return variance of the agent’s 
perceived current state, without modifying the network structure or 
optimization procedure. DRL: In this experiment, we employ the TD3
(Fujimoto et al., 2018) algorithm as the baseline RL model. Additionally, 
we implement the PER mechanism in all the above baselines to ensure a 
fair comparison. The specific hyperparameters used during training are 
listed in Tables A1 and A2 in the Appendix. For baseline algorithms in-
volving human participation, we assume that the human operator pos-
sesses professional operational proficiency. Before the experiment be-
gins, each participant is required to independently control the vehicle 
for 20 episodes in the training scenario to become familiar with the op-
eration process. Human operators are involved throughout the training 
process, while in the testing scenarios, only the trained policies are eval-
uated without human involvement.

We employ four metrics to evaluate learning performance: Reward: 
the cumulative reward obtained by the agent in each episode (excluding 
human intervention shaping rewards). Surviving distance: the distance 
traveled by the ego vehicle before reaching either the goal state or a 
failure state. Success rate: the proportion of episodes in which the agent 
successfully completes the task in the testing environments. Collision 
rate: the proportion of episodes in which the ego vehicle collides with 
obstacles or deviates from the route.

6.2.  Training performance evaluation

In this section, we verify whether the proposed HiRIL method 
demonstrates superior training performance compared to other state-
of-the-art HiL algorithms. The evaluation focuses on both learning per-
formance and safety. Learning performance is assessed using reward and 
survival distance, while safety is evaluated based on the collision rate 
during training.
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Fig. 3. Comparison of training performance across four different methods (HiRIL, IARL, HULA, and TD3): a. Episodic training rewards during the training 
process, with mean and standard deviation calculated based on four different random seeds; b. Episodic surviving distances during the training process, with mean and 
standard deviation calculated based on four different random seeds; c. Collision rates throughout the training process, with mean and standard deviation calculated 
based on four different random seeds; d. Average rewards across all episodes, with mean and standard deviation calculated over 400 episodes; e. Average surviving 
distances across all episodes, with mean and standard deviation calculated over 400 episodes.

Fig. 3(a) and (b) visualize the learning performance in the form of 
curves, where solid lines represent the mean values and the shaded ar-
eas indicate the standard deviation (all algorithms are trained with four 
different random seeds). In Fig. 3(a), HiRIL achieves faster reward con-
vergence and higher final rewards than the other methods, indicating 
superior training efficiency and policy performance. Fig. 3(b) shows the 
evolution of survival distance during training. The results reveal that the 
standard TD3 algorithm struggles to improve the policy, with frequent 
fluctuations even in the later training stages. In contrast, the three HiL 
algorithms perform better, with faster learning rates—especially HiRIL, 
which achieves the highest survival distance among all baseline algo-
rithms in around 50 episodes. The evaluation of computational effi-
ciency is shown in Table  A3.

Fig. 3(d) and (e) present statistical comparisons of rewards and 
survival distances over 400 training episodes. The bars indicate the 
mean values, and the error bars represent the standard deviations. 
From Fig. 3(c), it can be seen that HiRIL achieves the highest av-
erage reward over the entire training process (M = −10.14, SD = 
18.37), followed by IARL (M = −24.79, SD = 36.28), TD3 (M = 
−27.53, SD = 20.88), and HULA (Mean = −31.46, SD = 32.08). As 
shown in Fig. 2(d), HiRIL also achieves the longest average survival 
distance (M = 77.57, SD = 10.8), followed by HULA (M = 77.15, 
SD = 12.5), IARL (M = 66.94, SD = 31.56), and TD3 (M = 65.48,
SD = 25.53).

To assess safety, we calculate the collision rates of the ego vehicle 
over 400 episodes, as shown in Fig. 3(c). HiRIL reports the lowest colli-
sion rate (M = 6.25%, SD = 2.18), significantly outperforming IARL (M 
= 20.00%, SD = 4.06), HULA (M = 9.75%, SD = 2.42), and TD3 (M = 
32.75%, SD = 5.45). These results indicate that HiRIL not only improves 
policy performance but also enhances safety during the training process.

Fig. 4. Success rates of policies trained with different methods across the five 
testing scenarios.

6.3.  Testing performance evaluation

In this section, we evaluate the practicality of the aforementioned 
algorithms by testing the trained policies in terms of safety and robust-
ness. For safety, we use the success rate as the evaluation metric to as-
sess whether the policies can effectively avoid high-risk behaviors in 
scenarios not encountered during training. For robustness, we conduct 
evaluations from the following three perspectives: Adaptability to new 
environments: This assesses whether the policy can adapt well to sce-
narios different from those used during training. Specifically, we modify 
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the number of vehicles, their initial positions, and vehicle types in the 
test environment to create clear discrepancies from the training con-
ditions. Robustness to non-stationary human guidance: This evalu-
ates the policy’s stability under demonstrations of varying quality. We 
simulate two types of non-stationary human operators: The first type 
represents operators affected by unexpected factors, resulting in occa-
sional erroneous operations. This is simulated by replacing 1/4 of the 
human demonstration data in the buffer with random actions. The sec-
ond type represents inexperienced beginners, simulated by providing no 
prior training before the experiment begins. Robustness to noisy dis-
turbances: To simulate external interference such as sensor errors or 
actuator jitter, we inject Gaussian noise with zero mean and a standard 
deviation equal to 5% of the control range into the control commands. 
This evaluates the policy’s sensitivity to low-level input disturbances.

To evaluate safety, we repeated each experiment 30 times in every 
testing scenario using the same sequence of random seeds. As shown 
in Fig. 4, the agent trained with HiRIL successfully completed all previ-
ously unseen tasks, whereas the baseline methods succeeded only in part 
of them. The reason HiRIL achieves the highest success rate among all 
methods is that it leverages human interventions more efficiently at both 
the value-learning and policy-learning levels. Specifically, HiRIL triggers 
human guidance based on dual uncertainty, which focuses demonstra-
tion data on safety-critical states with high uncertainty. By combining 
behavior cloning loss with a risk-aware PER mechanism, HiRIL repeat-
edly updates the policy on these human-corrected experiences, enabling 
it to utilize human interventions more precisely and guide the policy to-
ward safer and more generalizable behaviors.

To evaluate the robustness of different methods in handling varia-
tions in the quality of human guidance, we use the average survival 
distance as the performance metric. A smaller performance drop under 
non-stationary human guidance is considered indicative of higher ro-
bustness. As shown in Fig. 5, HiRIL exhibits the smallest performance 
fluctuations across all testing scenarios, with its results under both “sta-
tionary” and “non-stationary” conditions mostly close to the balanced 
50:50 dividing line. This indicates that the learned policy is more robust 
to changes in human guidance quality. Since IARL adopts a behavior 
cloning strategy to imitate human guidance, it is more susceptible to 
the negative impact of low-quality demonstrations. In contrast, HULA 
relies solely on human interventions without imitation, making it less 
affected by the quality of guidance. Moreover, the results also show that 
all three methods demonstrate better robustness when dealing with oc-
casionally erroneous human operators compared to inexperienced ones. 
This suggests that a basic level of operational competence in human 
demonstrations has a greater influence on policy training than occa-
sional mistakes.

We also evaluated the robustness of each method under noisy con-
ditions. Specifically, disturbances were injected into the control com-
mands, and the performance was assessed across five different scenarios. 
As shown in Table 1, HiRIL achieved the highest task distance (79.10 
± 1.54) and success rate (93.3 ± 2.4) under perturbations, outperform-
ing IARL, HULA, and TD3. IARL performed slightly better than HULA, 
primarily because it incorporates a behavior cloning objective during 
human intervention, which allows the policy to align more closely with 
expert behavior in critical states. As a result, it learns a more conserva-
tive and noise-robust policy.

Table 1 
Comparison of survival distance and success rate for 
four methods in noise-injected scenarios.

 Method  Survival Distance  Success Rate
 HiRIL  79.10±(1.54)  93.3±(2.4)
 IARL  77.82±(1.90)  81.3±(3.8)
 HULA  75.54±(3.29)  78.0±(3.8)
 TD3  73.18±(5.02)  58.7±(5.1)

Fig. 5. Bar chart of survival distances in five test environments under the guid-
ance of stationary humans and non-stationary humans (including two types: 
those with occasional operational errors and those lacking operational experi-
ence).

Fig. 6. Comparison of collision rates and intervention rates with or without 
epistemic or aleatoric uncertainty.

6.4.  Validation of mechanism effectiveness

This section evaluates the effectiveness of the proposed method from 
three perspectives: (i) whether the HiRIL can effectively trigger interven-
tions; (ii) whether HiRIL can effectively reduce the frequency of human 
interventions; (iii) the performance contribution of each key module.

Effectiveness Analysis of HiRIL in Triggering Interventions.
Within the HiRIL framework, we conduct comparative ablation ex-
periments by removing either the aleatoric uncertainty described in
Section 3.1 or the epistemic uncertainty described in Section 3.2. As 
shown in Fig. 6, removing either source of uncertainty results in higher 
collision rates and lower intervention rates, indicating a weakened risk 
estimation capability. Therefore, the dual-mode uncertainty modeling 
enables a more precise intervention-triggering mechanism and achieves 
a better balance between safety and efficiency.

Effectiveness Analysis of HiRIL in Reducing Intervention Fre-
quency. We first verify the relationship between the collision rate 
and intervention rate under different risk thresholds, and then use 
step-based and episode-based intervention rates to examine whether 
the frequency of human interventions decreases as training progresses. 
As shown in Fig. 7(a), as the risk threshold decreases, interven-
tions are triggered more frequently. Specifically, the intervention rate
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Fig. 7. (a) Relationship between collision rate (%) and intervention rate (%) un-
der different risk thresholds. with the mean and standard deviation computed 
over four different random seeds. (b) Human intervention rates throughout the 
entire training process of HiRIL. Two metrics are used for evaluation: “step-
based” and “episode-based” intervention rates. The step-based metric calculates 
the proportion of time steps guided by humans within a given episode inter-
val, with its standard deviation computed over 50 episodes in that interval; the 
episode-based metric denotes the proportion of episodes within the interval in 
which human intervention occurs.

Fig. 8. Ablation study of HiRIL. Training reward curves under different config-
urations: full HiRIL, without risk difference (w/o RD), without reward shaping, 
and without imitation. The mean and standard deviation are calculated based 
on four different random seeds.

increases from 2.18%→5.68%→13.10%→28.38%→35.81%, while the 
collision rate drops significantly from 34.0%→28.6%→14.1%→1.2%→
0.3%. This trend indicates that lower risk thresholds help trigger
interventions more promptly in high-risk situations, thereby effectively 
reducing collisions. However, more frequent interventions may in-
crease human workload and operational costs. Therefore, in practical
applications, it is important to strike a balance between safety and inter-
vention cost by selecting an appropriate risk threshold. Fig. 7(b) shows 
the change in human intervention rates during the training process of 
HiRIL. The results reveal a clear downward trend in intervention fre-
quency, suggesting that the agent gradually learns to behave more safely 

and robustly, becoming increasingly less dependent on human guid-
ance. This trend demonstrates the effectiveness of the imitation mech-
anism in improving training efficiency and reducing the cost of human
intervention.

Module Contribution Analysis. We conducted ablation experi-
ments to analyze the contribution of different modules to performance 
improvement, and the results are shown in Fig. 8. In Fig. 8, the three 
ablated modules correspond to: the intervention-based reward shaping 
mechanism in Eq. (28), the risk-difference (RD) based prioritized expe-
rience replay in Eq. (31), and the behavior cloning objective in Eq. (35). 
The experimental results indicate that the imitation learning objective 
and reward shaping mechanism play a critical role in enhancing algo-
rithm performance. Removing either of these modules leads to a signifi-
cant reduction in training efficiency and final performance. In contrast, 
removing the risk-difference (RD) term has a relatively minor impact.

7.  Conclusion

This paper proposes HiRIL, a human-in-the-loop reinforcement 
learning method that integrates a risk-aware intervention-triggering 
mechanism with imitation-based policy optimization, aiming to improve 
sample efficiency and policy safety in safety-critical continuous control 
tasks. The approach models epistemic and aleatoric uncertainties using 
BIQN and constructs a quantitative risk metric by providing an unbi-
ased estimation of the second-order moment of their joint distribution. 
This risk measure enables effective human intervention triggering and 
efficient utilization of human demonstration data. Experimental results 
show that HiRIL significantly outperforms baselines on the CARLA end-
to-end autonomous driving benchmark and exhibits excellent robustness 
and generalization capabilities under challenging conditions such as in-
put noise and non-stationary human interventions.

However, the proposed method still has several limitations, mainly 
in the following three aspects: The intervention triggering conditions do 
not explicitly account for suboptimal human policy performance, which 
may limit the policy function due to human performance ceilings; The 
intervention threshold is set as a fixed value, this static rule may become 
ineffective when facing distributional shifts or changes in task complex-
ity; A fixed weight is used when incorporating human intervention data 
into policy updates, neglecting both the variability among human partic-
ipants and the agent’s continuously improving capabilities. Future work 
could explore these three directions to further enhance the adaptability 
and practicality of the proposed method.
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Appendix A. 

(Table A1-A3).

Table A1 
Default values of training hyperparameters used in the experi-
ments.

 Hyperparameter  Value
 Batch Size  128
 Max Training Epochs  400
 Replay buffer size  38,400
 Initial exploration  1
 Final exploration  0.05
 Discount Factor  0.95
 Value Network Learning Rate  0.0005
 Policy Network Learning Rate  0.0002
 Policy Update Delay Frequency  2
𝑘𝜏  8
𝑘𝜃  8
 Huber Loss Threshold 𝜅  1.0
 Number of Convolutional Layer Channels  (6, 16)
 Fully Connected Layer Parameters  (256, 128, 64, 2)

Table A2 
Hyperparameters for the PER mecha-
nism.

 Type  Value
 Priority factor  1
 Sample factor  1
 Offset factor (𝜀) 10−3

Table A3 
Comparation of computational cost per 200 steps.

 Algorithm  Time consumption (s) per 200 steps
 HiRIL  6.50
 HULA  6.18
 IARL  6.32
 TD3  6.08
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