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Human-in-the-loop reinforcement learning (HiL-RL) improves policy safety and learning efficiency by incorporat-
ing real-time human interventions and demonstration data. However, existing HiL-RL methods often suffer from
inaccurate intervention timing and inefficient use of demonstration data. To address these issues, we propose a
novel framework called HiRIL (Human-in-the-loop Risk-aware Imitation-enhanced Learning), which establishes
a closed-loop learning mechanism that integrates risk-aware intervention triggering and imitation-based policy
optimization under a dual-mode uncertainty metric. At the core of HiRIL is the Bayesian Implicit Quantile Net-
work (BIQN), which captures both epistemic and aleatoric uncertainty through Bayesian weight sampling and
quantile-based return modeling. These uncertainties are combined to generate risk scores for state-action pairs,
guiding when to trigger human intervention. To better utilize intervention data, HiRIL introduces a prioritized
experience replay mechanism based on risk difference, which emphasizes human interventions that significantly
reduce risk. During policy optimization, a local imitation loss is applied to clone human actions at intervention
points, enabling risk-guided joint optimization. We conduct extensive experiments on the CARLA end-to-end au-
tonomous driving benchmark. Results show that HiRIL consistently outperforms baselines across multiple metrics

and maintains strong robustness under perturbations and non-stationary human intervention.

1. Introduction

Human-in-the-loop reinforcement learning (HiL-RL) has increasingly
become a key technology for enhancing the applicability of reinforce-
ment learning in safety-critical scenarios in recent years (Retzlaff et al.,
2024; Yu & Chang, 2022; Zhang et al., 2021). Unlike traditional deep
reinforcement learning, which relies solely on autonomous exploration,
HiL-RL allows humans to intervene during training when the agent en-
gages in high-risk behaviors, providing high-value demonstration data
through takeover actions (Wu et al., 2022a,b). In complex tasks with
sparse rewards or high risks, this interactive paradigm not only reduces
potential dangers during the agent’s exploration process but also lever-
ages human prior knowledge to improve learning efficiency and guide
the learning direction. It offers a more reliable training framework for
domains such as autonomous driving, robotic manipulation, and large-
scale model training and alignment (Lanzaro & Sayed, 2024; Liu, 2025;
Tan et al., 2025).

Despite the significant potential of HiL-RL, existing research still
faces two core limitations. On one hand, regarding the intervention
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triggering mechanism, early methods rely on continuous human super-
vision to prevent unsafe actions through safety interruptions (Amodei
et al.,, 2016) or manual takeovers (Saunders et al., 2017). However,
these approaches are labor-intensive and difficult to scale. To reduce
the human workload, some studies have attempted to enable agents to
autonomously identify dangerous states by employing external risk pre-
dictors (Xie et al., 2022a), artificial potential fields (Huang et al., 2024),
or single-type uncertainty measures (Singi et al., 2024) to trigger inter-
ventions. Nevertheless, these methods depend on additional modules
or adopt single-mode uncertainty modeling, making it difficult to accu-
rately assess the risk level of the policy. This often leads to either ex-
cessive or insufficient human intervention. On the other hand, in terms
of utilizing intervention data, although imitation learning methods can
leverage demonstration data from interventions to accelerate training
(Nair et al., 2018), large volumes of autonomously collected experience
tend to dilute the quality of limited demonstrations, making it difficult
for them to have a lasting impact on policy updates. Even with dual-
buffer experience replay mechanisms (Liu et al., 2025), the variation
in demonstration quality is often overlooked, resulting in high-value
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Fig. 1. Overall architecture of the HiRIL framework. The environment state is first fed into the actor network to generate an action, while the critic network,
built upon BIQN, outputs the quantile return distribution for each state-action pair to perform dual uncertainty assessment. If the estimated uncertainty exceeds a
predefined threshold, a human intervention is triggered and the human-provided action is executed; otherwise, the RL action is used. The environment then returns
transition information, rewards, uncertainty values, and risk labels, which are recorded together with the state and action. These transitions are categorized into
exploratory and intervention experiences and stored in a risk-difference-based prioritized replay buffer. This enables subsequent policy updates guided by risk-aware

imitation learning.

intervention data not being fully utilized. In summary, current HiL-RL
methods still suffer from two major bottlenecks: inaccurate intervention
timing and inefficient utilization of intervention demonstrations.

To address the above challenges, this paper proposes a Human-in-
the-loop Risk-aware Imitation-enhanced Learning framework (HiRIL).
This framework generates risk assessments through end-to-end uncer-
tainty modeling, enabling precise intervention triggering, and fully
leverages human intervention data via risk-sensitive experience replay
and imitation-enhanced learning. The overall architecture of the pro-
posed method is illustrated in Fig. 1. Specifically, we introduce the
Bayesian Implicit Quantile Network (BIQN) as a risk scorer. BIQN es-
timates epistemic uncertainty through Bayesian sampling and captures
aleatoric uncertainty via quantile-based return modeling, thereby gen-
erating precise risk assessments for each state-action pair that incorpo-
rate both types of uncertainty. Based on these risk scores, HiRIL proac-
tively triggers human takeovers in high-risk states and applies a one-
time penalty to guide the policy away from dangerous regions. During
experience replay, we design a risk-difference-based prioritized replay
mechanism to better utilize key demonstration segments where human
actions significantly reduce risk. In the policy optimization phase, we
incorporate a behavior cloning objective to improve learning efficiency.

This paper makes the following contributions:

1. A comprehensive risk-aware human-in-the-loop framework. We
propose HiRIL, this framework integrates risk-triggered human in-
tervention, risk-difference-based prioritized replay, and imitation-
enhanced policy updates into a closed-loop training process, signifi-
cantly improving both safety and learning efficiency.

2. A Bayesian distributional risk estimator. We propose BIQN,
which provides distributional representations for both epistemic and
aleatoric uncertainties, and offers an unbiased estimation of the

second-order moment of their joint distribution. This estimate is used
as a risk metric to enable more precise triggering of human interven-
tions.

3. Systematic empirical validation in continuous control. On the
CARLA end-to-end autonomous driving benchmark, HiRIL demon-
strates comprehensive advantages over existing baselines across all
aspects, including both training performance and testing robustness,
showcasing its exceptional overall capabilities.

The remainder of the paper is organized as follows: Section 2 reviews
the related work. Section 3 provides the preliminaries. Section 4 intro-
duces the BIQN architecture and defines the risk estimation method.
Section 5 presents the proposed HiRIL approach. Section 6 describes
the experimental setup and analyzes the results. Section 7 concludes
the paper.

2. Related work

Human Intervention. Incorporating human intervention into rein-
forcement learning has been widely recognized as an effective approach
to improving agent safety and training reliability (Tan et al., 2025; Xie
et al., 2022b; Xu et al., 2022). Early methods largely relied on contin-
uous human supervision. For example, the safety interruption mech-
anism proposed in Amodei et al. (2016) allows real-time termination
of dangerous behaviors, while Saunders et al. (2017) trains a super-
visory model through human interception of unsafe actions to reduce
the frequency of future interventions. However, such methods require
expert involvement throughout the training process, resulting in high
labor costs. To alleviate this issue, some studies have explored mecha-
nisms that allow agents to actively request interventions. For instance,
Mandel et al. (2017) employs neural networks to identify high-risk
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states, Xie et al. (2022a) detects irreversible states to request assistance,
and Huang et al. (2024) uses artificial potential fields to determine the
timing of interventions. While these approaches reduce human work-
load, they rely on external modules and suffer from limited generaliza-
tion capabilities. In recent years, some works have shifted toward lever-
aging the agent’s internal uncertainty estimates to develop end-to-end
risk-aware intervention strategies without external structures. For exam-
ple, Singi et al. (2024) focuses on epistemic uncertainty, and Silva et al.
(2020) targets aleatoric uncertainty. In contrast, this paper proposes a
more refined dual-mode uncertainty modeling approach that combines
Bayesian sampling with quantile-based return modeling, enabling more
accurate risk quantification and more reliable intervention triggering.

Imitation Learning. Imitation learning improves the learning effi-
ciency and convergence speed of agents in environments with sparse
rewards or high complexity by leveraging human intervention behav-
iors as demonstration data (Celemin et al., 2022; Hua et al., 2021; Zare
et al., 2024). Representative methods such as DQfD (Hester et al., 2018)
and GAIL (Ho & Ermon, 2016) can significantly boost performance in
the early stages of training. However, these approaches mainly rely on
action substitution or supervised pretraining and do not involve direct
optimization of the policy structure itself. In recent years, some studies
have explored deeper integration of human expertise by introducing be-
havior cloning objectives (Fujimoto & Gu, 2021) or modifying the policy
function (Nair et al., 2018). Nevertheless, limited human demonstra-
tions are still prone to being diluted by large volumes of autonomously
collected experience. To mitigate this issue, several works have pro-
posed dual experience replay mechanisms, storing human demonstra-
tions and agent-generated experiences in separate buffers (Liu et al.,
2025; Wang et al., 2018). While this improves the utilization effi-
ciency of demonstration data, it fails to account for the inherent vari-
ability in demonstration quality. Building upon the prioritized experi-
ence replay mechanism (Schaul et al., 2015), this study introduces a
risk-difference term and combines penalty-based reward shaping with
imitation-enhanced joint policy optimization, enabling more effective
exploitation of high-value intervention data and enhancing overall pol-
icy performance.

Uncertainty in Deep Reinforcement Learning. Uncertainty mod-
eling in deep reinforcement learning primarily aims to optimize
the exploration-exploitation trade-off and improve training efficiency.
Existing research typically categorizes uncertainty into two types
(Gawlikowski et al., 2023): epistemic uncertainty, which arises from
the agent’s lack of knowledge about unknown states, and aleatoric un-
certainty, which originates from the inherent stochasticity of the envi-
ronment. Epistemic uncertainty is commonly modeled using ensemble
methods (e.g., Bootstrapped DQN Osband et al., 2016) and Bayesian ap-
proaches (van der Vaart et al., 2024). While ensemble methods heuristi-
cally estimate uncertainty, they often lack proper probabilistic calibra-
tion. In contrast, Bayesian methods introduce distributions over model
parameters and offer stronger theoretical guarantees. Notably, Dropout
(Hiraoka et al., 2021) can be interpreted as a form of Bayesian approxi-
mation. Due to its lower computational cost, it is widely used in practice.
Aleatoric uncertainty is typically modeled using distributional reinforce-
ment learning, such as QR-DQN (Dabney et al., 2018b) and IQN (Dabney
et al., 2018a). IQN employs implicit quantile regression, allowing for
more flexible and accurate modeling of return distributions. Modeling
a single type of uncertainty is often insufficient (Lockwood & Si, 2022);
hence, joint modeling of both types has gained increasing attention.
EQN (Hoel et al., 2023), for example, attempts to combine ensembles
with distributional regression to capture both epistemic and aleatoric
uncertainty. However, this approach yields biased estimates of variance
(Clements et al., 2019). To address this limitation, we propose the BIQN,
which integrates Bayesian inference with quantile-based modeling in a
principled manner. BIQN provides a full distributional model that si-
multaneously captures both types of uncertainty, offering stronger rep-
resentation capabilities. Furthermore, this modeling approach enables
unbiased variance estimation via Monte Carlo sampling.
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3. Preliminaries

In this section, we first introduce the notation and concepts of HiL-
RL, followed by the quantile-based methods for modeling aleatoric un-
certainty and the Bayesian approaches for modeling epistemic uncer-
tainty. The three components presented in this section collectively form
the foundation of the proposed HiRIL method.

3.1. Notation

We model the interaction between the RL agent and the environment
as a Markov Decision Process (MDP) M = (S, A, R, P, ., 7), where .S de-
notes the state space, A denotes the action space, R is the reward func-
tion, P is the transition probability, u, represents the initial state distri-
bution, and y is the discount factor.In this paper, we adopt a human-in-
the-loop learning framework, where humans can proactively intervene
to control agent.

Given the current state s, € S, the agent samples an action a*- € A
from the policy 7zy(s,), while a human can override this action with a
human action af’ € A. Therefore, the executed action is defined as:

a = Aal! + (1 - A)akt,

where A, is a binary indicator function of human intervention.
3.2. IQN: Implicit quantile networks

Unlike traditional Q-learning, IQN (Dabney et al., 2018a) belong to a
class of distributional RL methods. They focus on the inherent random-
ness of returns within the RL framework and aim to model the distribu-
tion of returns. IQN models return values through implicit quantiles:

Z, :=F;'(t) = f,(s, a). m
where Z_ represents the return’s quantile function evaluated at 7 ~
v(0,1).

The training objective of IQN is to reparameterize samples from the
base distribution to match the corresponding quantiles of the target dis-
tribution. For two quantile samples 7, 7’ ~ 1°(0, 1), the sampled temporal
difference (TD) error at step ¢ is:

4 * —
8T =14y Z (540, 75(5141):07) — Z (51, a,,0) 2

where 7*(s) = arg max, O(s, a), the sample-based Q”(s,, q,) estimation is
calculated by drawing K, samples from = ~ (0, 1):

KT
0"(5,0) = 2= Y. Z, (5.0) ®)

T =1
The loss function of IQN is defined as:

L1080 =E, p [% > o, <5f"’f )] &)
ij

where p,. is the Huber quantile regression loss, and D is the replay buffer
that stores training data.

3.3. BNN: Bayesian neural network

Bayesian Neural Networks (BNN) (Goan & Fookes, 2020) treat
weights and biases as random variables and sample the network’s
weights from a posterior distribution p(6|D), where D = (X,Y) repre-
sents the experiences collected by the agent, X = (x,-)fz | is the input set,
and Y = (y,-)f‘zl is the target label set. Since p(9|D) is difficult to com-
pute, a variational distribution ¢(6) is typically sampled to approximate
it, i.e. maximizing the Evidence Lower Bound (ELBO):

ELBO = / q(0)log p(Y | X,6)d0 — KL(q(0)|p(6))

M %)
= (Z / q(0)log p(y; | xf,e)d(a) — KL(q(0)|p(9))
i=1
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4. Distributional risk estimation via BIQN

This section introduces the BIQN model, which integrates IQN with
BNN to construct a unified distributional representation of both epis-
temic and aleatoric uncertainties. Based on the resulting joint distribu-
tion, we further provide an unbiased estimation of its second-order mo-
ment, thereby offering a quantitative metric for risk assessment to trig-
ger human interventions and effectively leverage demonstration data.

4.1. BIQN: Bayesian implicit quantile networks

In this section, we propose BIQN, a model that integrates the struc-
tures of IQN and BNN to simultaneously capture dual-mode uncertainty.

The key to constructing BIQN lies in addressing two fundamental
challenges: the fusion at the representation level and the fusion at the
optimization level. This requires designing a unified parameterized dis-
tribution to model the dual sources of randomness, and developing a
joint loss function to align the training objectives of both components.
However, given the existing forms of representation and loss functions
in IQN and BNN, integrating them directly is nontrivial. To overcome
this, we derive the distributional representation and corresponding loss
structure of BNN in the context of DRL, enabling BNN to be naturally
integrated into the IQN framework and thereby achieving unified mod-
eling and joint training.

When applying BNN to DRL, the input x; is a state-action pair (s;, a;),
and the output y; is an estimate of O(s;, a;), and Q-value becomes a prob-
ability disrtibution:

O(s,a) = f(s,a;0), 6~ q(0) (6)

When training by minimizing the squared error, it is typically assumed
that the error around the target value follows a Gaussian distribution.
Under this assumption, the posterior distribution over the parameters in
Eq. (5) can be written as:

~(5,0))°

o +C0 @

IOgP(J’i |xi;0) =
where C(c) = —log 1/(27)o is constant, 6,(6) is TD error at step :

80 =1+ 7 f (514157 (504010:07) = f(s5,0,30), 0 ~ q(6) (8)

the sample-based Q”(s,, q,) estimation is calculated by drawing K, sam-
ples from 6 ~ q(6):

Ky
0= o X fG.a:00) ©)
) =1

We approximate the integral for each example with a Monte Carlo esti-
mate by sampling a 6, ~ q(0):
u 2
ELBO % C, <2 —(6,6)) > - K L(q(0)|p(9)) a0
i=1
where C, = 262 is constant. Since DRL agents are typically trained over
millions of interactions, we assume that the log-likelihood term domi-
nates in the ELBO. Therefore, maximizing Eq. (10) is equivalently writ-
ten as minimizing the following loss function:

i

Lgyn@) = Ey,-p [ﬁ 2 (5r(éi))2] 1)

each sample §; ~ N'(u, %) is obtained by reparameterizing the network
parameters: @,- = i+ ¢, where € ~ N0, I).

Building on this, we can clearly derive the overall learning proce-
dure of BIQN. Specifically, combine Egs. (1) and (6), BIQN uses the
conditional quantile function f,(s, a; 0) to represent the return variable
under quantile point = ~ V°(0, 1) and network parameters 6 ~ g(6):

Zy(s,a)= f.(s,a;0), 7~T(0,1),0~q(0) (12)
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Combine Egs. (2) and (8), the TD error is used to update the target
value, defined as:

5;’r/(9) =1+ Zgo (si01:7" (5001)) = Zoo (512 1) a3

where 7*(s,) = arg max, O(s;, a,) is the optimal policy.

Combine Egs. (3) and (9), the sample-based Q”(s,, a,) estimation is
calculated by drawing K, x K, samples from = ~ U°(0, 1), 6 ~ ¢(9) as fol-
lows:

11 @G
0" = -3 kzl 2 Zy, 2 (5.0) (14

Combine Egs. (4) and (11), the training objective of BIQN is to min-
imize the Huber quantile loss under double sampling, defined as:

Lpron® =E, [%% Y (5:”’/‘(9m>>] (15)

m ij
where D is the replay buffer that stores training data, each §,, is sampled
by ¢(6) = N'(u. D).

4.2. Risk estimation: Metric of dual-mode uncertainty

In this section, we present the quantification and unbiased estima-
tion of dual-mode uncertainty in BIQN.

We define the dual-mode uncertainty of a state-action pair (s, a) as
the variance of the stochastic return variable Z, (s, a), which is gener-
ated by the proposed BIQN. In BIQN, the return variable is modeled as a
function of both parameter uncertainty 6 ~ ¢(¢) and quantile variability
7 ~ U(0,1). Formally, the dual-mode uncertainty is defined as:

DU(s.a) := Var[Zy 1 = E[Zy Zy ] - E[Z, ] E[Z,,] 16)
We model the stochastic return distribution p(Z, s, a) as:
P Zy ., |s,a) = /p(Ze’T, 0,7|s,a)q(0)p(r)d0dr a7)
which:
P(Zy .. 0,7ls,0) = N(f,(5,0;0),0,).
q0)=Nu, ) (18)
p(0)=1(0,1)

where ¢, reflects the intensity of noise perturbation on the neural net-
work output f,(s, a;0).
The expected return is computed by marginalizing over 6 and z:

E(Z,,] =/Zg.rp(29,r|s’a)d29,r

=/Ze,r//P(Ze,p9sfls,a)q(9)p(f)d9df

=///ZG%TN(fT(s,a;9),62)d29’rq(6)p(r)d0dr 19)

//ff(s,a;(?)q((?)p(f)dﬁdf

!

R Y Y s a0)

: i—1

i=

<.

To quantify the spread of the return distribution, we compute the
second-order moment:

E(Z; Z,,]
= // ( / Z;jTZG'Tp(ZG'T,G,T|s,a)d29$f)q(9)p(r)d0dr

=//(COU[20’T] + E[ZB’T]TE[Zg,r])q(e)p(‘r)dedr
(20)
= '/(0'Z + fTT(s, a,0)f.(s,a;6))q0)p(r)dOdr.

M M

R+ Y D ST (s a0)f (s.a:6)

i=1 j=I
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5. HiRIL: Human-in-the-loop risk-aware imitation-enhanced
learning

In this section, we propose a HiRIL method that integrates human
guidance into risk-aware policy optimization. The method enhances the
safety and efficiency of policy learning through two key modules: (1) a
human intervention mechanism based on dual-mode uncertainty, which
identifies high-risk states to trigger human takeover and uses reward
shaping to guide the agent away from risky behaviors; and (2) a risk-
aware prioritized experience replay mechanism incorporating human
demonstrations, which introduces the Temporal Difference Risk Differ-
ence (TDRD) to improve the utilization efficiency of critical experiences
and jointly optimizes the policy with imitation learning objectives.

5.1. Risk-aware human intervention

In this section, we present in detail the human-intervention-based
Actor—Critic RL interaction mechanism and the associated reward shap-
ing techniques.

In standard RL, during interaction with the environment, the agent’s
behavior policy 7,(s,) outputs actions to explore the environment. For
Actor—Critic methods, this process can be expressed as
att = my(s) + &, 0a, 21)
where 8¢ € RI™A s a training-related variable that scales the ex-
ploration noise, ® denotes the Hadamard (element-wise) product, and
&, ~ N(0, T9m0),

In order to ensure that human intervention is requested only when
necessary, we design a risk-aware intervention mechanism based on
dual-mode uncertainty estimation. Specifically, when the agent’s dual-
mode uncertainty estimate DU(s,,q,) for the current state-action pair
(s;. a;) exceeds a preset threshold 7, , the current state is regarded as
lying in a high-risk region and the system triggers human intervention;
at this moment, full control authority is handed over to the human. The
executed action is

a, = (IO Z 7)) qRl 4 A, - aH, (22)

where af denotes the human control action, and A, € RI™A js the
intervention function defined by the risk state:

(23)

14mA - f DU(s,, aRfl) > 14,
= i
otherwise.

Odim(A)

Each interaction yields a transition tuple ¢ that, after the action is
dispatched to the environment, is recorded and stored in the experience
replay buffer D. In particular, the actions produced by both the human
policy and the RL policy are associated with a dual-mode uncertainty
estimate DU, and the intervention function A,. Accordingly, the new
transition tuple ¢; is defined as follows to distinguish human experience
from ordinary RL experience:

g,' =(Siaai7ri7si+17 DU17 Ai)~ (24)

Clearly, when an intervention occurs, the current state is high risk
for the RL agent; in this context, the intervention event can be regarded
as a negative signal from which the agent should learn to avoid the
state. In reinforcement learning, the agent updates its value function
and policy based on the reward obtained at each interaction; therefore,
the influence of human intervention can be encoded via reward shaping.
Specifically, the post-intervention reward is defined as

r:hape =r, + rp . [(At — Idim(A)) A (Atfl — Odim(.A))]’ (25)

where r,, is a coefficient that weights the intervention penalty. Note that
the shaping penalty is applied only at the onset of intervention, i.e.,
(A, = Ty A (A,_; = 04 because subsequent states are governed
by human actions and should no longer be treated as high-risk for the
RL agent.

Expert Systems With Applications 308 (2026) 131118

5.2. Risk-aware prioritized experience replay and imitation learning

In this section, we propose a risk-aware prioritized experience replay
mechanism and imitation learning objectives tailored to human demon-
strations.

In RL, data are typically sampled from the replay buffer uniformly;
however, this treats every sample equally and cannot fully exploit the
value of different experiences. A more effective method is Prioritized
Experience Replay (PER), which assumes that experiences in the buffer
D follow a certain distribution J, whose probability mass function is
defined as:

& (26)
Ziel) ki '
The priority is determined by the temporal-difference (TD) error 5,.TD s
which is computed as follows:

py ()=

ki =[o7"|+e
’ @7)
= ‘ri +y- Q(s,-+l,7r¢(si+1);0) - Q(sl-,a,-;é')‘ +€

where ¢ is a small positive constant to guarantee the probability larger
than zero.This formulation indicates that higher state risk yields a lower
base priority, thereby reducing the sampling frequency of high-risk data.

When the experience comes from human demonstrations, we aug-
ment the sampling priority defined in Eq. (29) with an exponential term
representing the difference between the DU values of the human ac-
tion and the RL action. This additional component is referred to as the
Risk Difference (RD) term, which indicates that when the human action
significantly reduces risk, the priority of the corresponding sample is
increased. The improved priority is then defined as

K[ = [67P| + & + (&, = 1) - exp[DUGs;. af) - DUGsi. /)] (28)

We refer to the aforementioned mechanism as TDRD.
Assume that the replay buffer D is divided into RL experiences and
human experiences, denoted as D; U D,. The critic loss is defined as

LR N N
£critic(e) = |ED] [%% Z z pK<5t ! (em)>:|

mij

(29)
1 1 ‘r,,r’,.Z N
+Ep, [Mﬁ P pk<6, ! (9m>>] ,
m o ij
where
!
5" 1) = ro+rZow (i1 7 (s11)) = Zoo (500 atRL), (30)
’
5" 2) = retyZpy (s,+1,7t*(s,+1)) - ZHJ(SI, a,H). (3D

The actor loss is defined as:
Lctor(®) = Ep, [—Q(S,, 7f¢(3,))] +4-Ep, [||7f¢(3,) - a,H ||2]- (32)

where 1 is a manually determined constant that weighs the importance
of behavior cloning.

In summary, the complete form of the algorithm is presented in
Algorithm 1.

6. Simulation

We conduct experiments to investigate the following questions: (1)
Whether HiRIL can further improve the efficiency and performance of
reinforcement learning during the training phase compared to baseline
methods; (2) Whether agents trained with HiRIL exhibit enhanced ro-
bustness and adaptability during the testing phase compared to base-
lines; (3) Whether the mechanism design of HiRIL is rational and effec-
tive. For Question (1), we comprehensively compare the training effi-
ciency and performance of different algorithms under the same hyper-
parameter settings using multiple evaluation metrics. For Question (2),
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Algorithm 1 HiRIL algorithm.
1: Initialize: Replay buffer D; Parameters 6 = (u, %) and ¢ randomly;
Threshold 7, for intervention triggering.
2: for each episode do

3 5o < initial state
4: fort=0to T do
5: a}“‘ — my(s) +€;
6: Estimate DU(s,, a®) using Eq. (16);
7: if DU(s,, afl) > 7,5y then
8: Adopt human action a, = a', set A, = T;
9: else
10: Select RL action a, = ai", set A, = 0;
11: Execute g,, observe r, and new state s, ;
12: Shape reward r, = r, + p* [(A, =DAA_ = 0)];
13: Store tuple (s,, a;,r,, s,.1, DU,, A,) in D;
14: Sample N tuples from D with probability p(i) = ﬁ ;
15: Update priority by Eq. (28); ’
16: /* Critic Update */
17: Compute critic loss L¢.(0) using Eq. (29);
18: Update 6 via gradient descent;
19: /* Actor Update */
20: Estimate Q(s, a) using Eq. (14);
21: Compute actor 1oss Lo (¢) using Eq. (32);
22: Update ¢ via gradient descent;

we evaluate the agents from three perspectives: adaptability to differ-
ent environments, robustness to non-stationary human guidance, and
robustness to control input noise. For Question (3), we mainly verify
whether the HiRIL mechanism can effectively trigger interventions and
reduce the frequency of human interventions, and we conduct a contri-
bution analysis of each module.

6.1. Environment setup

As with most RL algorithms, the proposed HiRIL can be broadly
applied to decision-making and control tasks with continuous action
spaces. In this paper, we focus on end-to-end autonomous driving as the
research domain and adopt the CARLA simulator as the experimental
platform, since CARLA can generate an unlimited number of scenarios
across diverse road networks and traffic flows.

We set up six representative scenarios: one for training the proposed
method and the remaining five for testing and evaluating its perfor-
mance. Visualizations of all scenarios are provided in Fig. 2. In the train-
ing scenario, seven surrounding vehicles (all sedans) are placed around
the ego vehicle. Their initial speeds range between [3, 5] m/s, and subse-
quent acceleration is governed by the IDM model (Treiber et al., 2000).
The initial positions of all vehicles are fixed at the beginning of each
training episode. The differences between training and testing scenarios
lie in the number of surrounding vehicles, their initial position distri-
butions, and vehicle types. In these scenarios, the task objective is to
drive the autonomous vehicle safely to its destination while avoiding
hazardous behaviors such as collisions with other vehicles or lane de-
partures. Reward shaping includes dense rewards proportional to lateral
control stability, a terminal reward when the ego vehicle successfully
reaches the destination, and penalties for collisions or lane departures.

We adopt state-of-the-art algorithms in the field of HiL-RL as base-
lines and compare their performance with our proposed algorithm: IARL
(Wang et al., 2018): This is a representative method that combines re-
inforcement learning with imitation learning. Specifically, the RL pol-
icy network is modified by incorporating a behavior cloning objective
to adapt to human demonstration actions. Once human intervention
occurs, human demonstrations replace RL exploratory actions, and a
penalty signal is added to the reward. HULA (Singi et al., 2024): This
is a representative method that combines reinforcement learning with
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Fig. 2. (a) Scenario 0: This scenario serves as the training scenario. (b) Sce-
nario 1: This scenario removes all surrounding traffic participants to evaluate
the anti-overfitting capability of the generated driving policy. (c-f) Scenarios
2-5: These scenarios are used to test the adaptability of the obtained policy in
new situations not encountered during the training phase. Changes include the
number of surrounding vehicles, initial positions, and vehicle types.

&

human intervention. It requests assistance from human experts by as-
sociating decision uncertainty with the return variance of the agent’s
perceived current state, without modifying the network structure or
optimization procedure. DRL: In this experiment, we employ the TD3
(Fujimoto et al., 2018) algorithm as the baseline RL model. Additionally,
we implement the PER mechanism in all the above baselines to ensure a
fair comparison. The specific hyperparameters used during training are
listed in Tables A1 and A2 in the Appendix. For baseline algorithms in-
volving human participation, we assume that the human operator pos-
sesses professional operational proficiency. Before the experiment be-
gins, each participant is required to independently control the vehicle
for 20 episodes in the training scenario to become familiar with the op-
eration process. Human operators are involved throughout the training
process, while in the testing scenarios, only the trained policies are eval-
uated without human involvement.

We employ four metrics to evaluate learning performance: Reward:
the cumulative reward obtained by the agent in each episode (excluding
human intervention shaping rewards). Surviving distance: the distance
traveled by the ego vehicle before reaching either the goal state or a
failure state. Success rate: the proportion of episodes in which the agent
successfully completes the task in the testing environments. Collision
rate: the proportion of episodes in which the ego vehicle collides with
obstacles or deviates from the route.

6.2. Training performance evaluation

In this section, we verify whether the proposed HiRIL method
demonstrates superior training performance compared to other state-
of-the-art HiL algorithms. The evaluation focuses on both learning per-
formance and safety. Learning performance is assessed using reward and
survival distance, while safety is evaluated based on the collision rate
during training.
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Fig. 3. Comparison of training performance across four different methods (HiRIL, IARL, HULA, and TD3): a. Episodic training rewards during the training
process, with mean and standard deviation calculated based on four different random seeds; b. Episodic surviving distances during the training process, with mean and
standard deviation calculated based on four different random seeds; ¢. Collision rates throughout the training process, with mean and standard deviation calculated
based on four different random seeds; d. Average rewards across all episodes, with mean and standard deviation calculated over 400 episodes; e. Average surviving
distances across all episodes, with mean and standard deviation calculated over 400 episodes.

Fig. 3(a) and (b) visualize the learning performance in the form of
curves, where solid lines represent the mean values and the shaded ar-
eas indicate the standard deviation (all algorithms are trained with four
different random seeds). In Fig. 3(a), HiRIL achieves faster reward con-
vergence and higher final rewards than the other methods, indicating
superior training efficiency and policy performance. Fig. 3(b) shows the
evolution of survival distance during training. The results reveal that the
standard TD3 algorithm struggles to improve the policy, with frequent
fluctuations even in the later training stages. In contrast, the three HiL
algorithms perform better, with faster learning rates—especially HiRIL,
which achieves the highest survival distance among all baseline algo-
rithms in around 50 episodes. The evaluation of computational effi-
ciency is shown in Table A3.

Fig. 3(d) and (e) present statistical comparisons of rewards and
survival distances over 400 training episodes. The bars indicate the
mean values, and the error bars represent the standard deviations.
From Fig. 3(c), it can be seen that HiRIL achieves the highest av-
erage reward over the entire training process (M = -10.14, SD =
18.37), followed by IARL (M —24.79, SD 36.28), TD3 (M =
—27.53, SD = 20.88), and HULA (Mean = —31.46, SD = 32.08). As
shown in Fig. 2(d), HiRIL also achieves the longest average survival
distance (M = 77.57, SD = 10.8), followed by HULA (M = 77.15,
SD = 12.5), IARL (M = 66.94, SD = 31.56), and TD3 (M = 65.48,
SD = 25.53).

To assess safety, we calculate the collision rates of the ego vehicle
over 400 episodes, as shown in Fig. 3(c). HiRIL reports the lowest colli-
sion rate (M = 6.25%, SD = 2.18), significantly outperforming IARL (M
= 20.00%, SD = 4.06), HULA (M = 9.75%, SD = 2.42), and TD3 (M =
32.75%, SD = 5.45). These results indicate that HiRIL not only improves
policy performance but also enhances safety during the training process.

Success rate (%)
100

100.0 100.0

66.7 63.3

scenariol

scenario2 scenario3

scenario4 scenario5

Fig. 4. Success rates of policies trained with different methods across the five
testing scenarios.

6.3. Testing performance evaluation

In this section, we evaluate the practicality of the aforementioned
algorithms by testing the trained policies in terms of safety and robust-
ness. For safety, we use the success rate as the evaluation metric to as-
sess whether the policies can effectively avoid high-risk behaviors in
scenarios not encountered during training. For robustness, we conduct
evaluations from the following three perspectives: Adaptability to new
environments: This assesses whether the policy can adapt well to sce-
narios different from those used during training. Specifically, we modify
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the number of vehicles, their initial positions, and vehicle types in the
test environment to create clear discrepancies from the training con-
ditions. Robustness to non-stationary human guidance: This evalu-
ates the policy’s stability under demonstrations of varying quality. We
simulate two types of non-stationary human operators: The first type
represents operators affected by unexpected factors, resulting in occa-
sional erroneous operations. This is simulated by replacing 1/4 of the
human demonstration data in the buffer with random actions. The sec-
ond type represents inexperienced beginners, simulated by providing no
prior training before the experiment begins. Robustness to noisy dis-
turbances: To simulate external interference such as sensor errors or
actuator jitter, we inject Gaussian noise with zero mean and a standard
deviation equal to 5% of the control range into the control commands.
This evaluates the policy’s sensitivity to low-level input disturbances.

To evaluate safety, we repeated each experiment 30 times in every
testing scenario using the same sequence of random seeds. As shown
in Fig. 4, the agent trained with HiRIL successfully completed all previ-
ously unseen tasks, whereas the baseline methods succeeded only in part
of them. The reason HiRIL achieves the highest success rate among all
methods is that it leverages human interventions more efficiently at both
the value-learning and policy-learning levels. Specifically, HiRIL triggers
human guidance based on dual uncertainty, which focuses demonstra-
tion data on safety-critical states with high uncertainty. By combining
behavior cloning loss with a risk-aware PER mechanism, HiRIL repeat-
edly updates the policy on these human-corrected experiences, enabling
it to utilize human interventions more precisely and guide the policy to-
ward safer and more generalizable behaviors.

To evaluate the robustness of different methods in handling varia-
tions in the quality of human guidance, we use the average survival
distance as the performance metric. A smaller performance drop under
non-stationary human guidance is considered indicative of higher ro-
bustness. As shown in Fig. 5, HiRIL exhibits the smallest performance
fluctuations across all testing scenarios, with its results under both “sta-
tionary” and “non-stationary” conditions mostly close to the balanced
50:50 dividing line. This indicates that the learned policy is more robust
to changes in human guidance quality. Since IARL adopts a behavior
cloning strategy to imitate human guidance, it is more susceptible to
the negative impact of low-quality demonstrations. In contrast, HULA
relies solely on human interventions without imitation, making it less
affected by the quality of guidance. Moreover, the results also show that
all three methods demonstrate better robustness when dealing with oc-
casionally erroneous human operators compared to inexperienced ones.
This suggests that a basic level of operational competence in human
demonstrations has a greater influence on policy training than occa-
sional mistakes.

We also evaluated the robustness of each method under noisy con-
ditions. Specifically, disturbances were injected into the control com-
mands, and the performance was assessed across five different scenarios.
As shown in Table 1, HiRIL achieved the highest task distance (79.10
+ 1.54) and success rate (93.3 + 2.4) under perturbations, outperform-
ing IARL, HULA, and TD3. IARL performed slightly better than HULA,
primarily because it incorporates a behavior cloning objective during
human intervention, which allows the policy to align more closely with
expert behavior in critical states. As a result, it learns a more conserva-
tive and noise-robust policy.

Table 1
Comparison of survival distance and success rate for
four methods in noise-injected scenarios.

Method Survival Distance Success Rate
HiRIL 79.10+(1.54) 93.3+(2.4)
IARL 77.82+(1.90) 81.3+(3.8)
HULA 75.54+(3.29) 78.0+(3.8)
TD3 73.18+(5.02) 58.7+(5.1)
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Fig. 6. Comparison of collision rates and intervention rates with or without
epistemic or aleatoric uncertainty.

6.4. Validation of mechanism effectiveness

This section evaluates the effectiveness of the proposed method from
three perspectives: (i) whether the HiRIL can effectively trigger interven-
tions; (ii) whether HiRIL can effectively reduce the frequency of human
interventions; (iii) the performance contribution of each key module.

Effectiveness Analysis of HiRIL in Triggering Interventions.
Within the HiRIL framework, we conduct comparative ablation ex-
periments by removing either the aleatoric uncertainty described in
Section 3.1 or the epistemic uncertainty described in Section 3.2. As
shown in Fig. 6, removing either source of uncertainty results in higher
collision rates and lower intervention rates, indicating a weakened risk
estimation capability. Therefore, the dual-mode uncertainty modeling
enables a more precise intervention-triggering mechanism and achieves
a better balance between safety and efficiency.

Effectiveness Analysis of HiRIL in Reducing Intervention Fre-
quency. We first verify the relationship between the collision rate
and intervention rate under different risk thresholds, and then use
step-based and episode-based intervention rates to examine whether
the frequency of human interventions decreases as training progresses.
As shown in Fig. 7(a), as the risk threshold decreases, interven-
tions are triggered more frequently. Specifically, the intervention rate
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increases from 2.18% —5.68% — 13.10% — 28.38% — 35.81%, while the
collision rate drops significantly from 34.0% —28.6% — 14.1% — 1.2% —
0.3%. This trend indicates that lower risk thresholds help trigger
interventions more promptly in high-risk situations, thereby effectively
reducing collisions. However, more frequent interventions may in-
crease human workload and operational costs. Therefore, in practical
applications, it is important to strike a balance between safety and inter-
vention cost by selecting an appropriate risk threshold. Fig. 7(b) shows
the change in human intervention rates during the training process of
HiRIL. The results reveal a clear downward trend in intervention fre-
quency, suggesting that the agent gradually learns to behave more safely
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and robustly, becoming increasingly less dependent on human guid-
ance. This trend demonstrates the effectiveness of the imitation mech-
anism in improving training efficiency and reducing the cost of human
intervention.

Module Contribution Analysis. We conducted ablation experi-
ments to analyze the contribution of different modules to performance
improvement, and the results are shown in Fig. 8. In Fig. 8, the three
ablated modules correspond to: the intervention-based reward shaping
mechanism in Eq. (28), the risk-difference (RD) based prioritized expe-
rience replay in Eq. (31), and the behavior cloning objective in Eq. (35).
The experimental results indicate that the imitation learning objective
and reward shaping mechanism play a critical role in enhancing algo-
rithm performance. Removing either of these modules leads to a signifi-
cant reduction in training efficiency and final performance. In contrast,
removing the risk-difference (RD) term has a relatively minor impact.

7. Conclusion

This paper proposes HiRIL, a human-in-the-loop reinforcement
learning method that integrates a risk-aware intervention-triggering
mechanism with imitation-based policy optimization, aiming to improve
sample efficiency and policy safety in safety-critical continuous control
tasks. The approach models epistemic and aleatoric uncertainties using
BIQON and constructs a quantitative risk metric by providing an unbi-
ased estimation of the second-order moment of their joint distribution.
This risk measure enables effective human intervention triggering and
efficient utilization of human demonstration data. Experimental results
show that HiRIL significantly outperforms baselines on the CARLA end-
to-end autonomous driving benchmark and exhibits excellent robustness
and generalization capabilities under challenging conditions such as in-
put noise and non-stationary human interventions.

However, the proposed method still has several limitations, mainly
in the following three aspects: The intervention triggering conditions do
not explicitly account for suboptimal human policy performance, which
may limit the policy function due to human performance ceilings; The
intervention threshold is set as a fixed value, this static rule may become
ineffective when facing distributional shifts or changes in task complex-
ity; A fixed weight is used when incorporating human intervention data
into policy updates, neglecting both the variability among human partic-
ipants and the agent’s continuously improving capabilities. Future work
could explore these three directions to further enhance the adaptability
and practicality of the proposed method.
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Appendix A.

(Table A1-A3).

Table Al

Default values of training hyperparameters used in the experi-

ments.
Hyperparameter Value
Batch Size 128
Max Training Epochs 400
Replay buffer size 38,400
Initial exploration 1
Final exploration 0.05
Discount Factor 0.95
Value Network Learning Rate 0.0005
Policy Network Learning Rate 0.0002
Policy Update Delay Frequency 2
k, 8
k, 8
Huber Loss Threshold x 1.0
Number of Convolutional Layer Channels (6, 16)

Fully Connected Layer Parameters (256, 128, 64, 2)

Table A2
Hyperparameters for the PER mecha-
nism.
Type Value
Priority factor 1
Sample factor 1
Offset factor (¢) 1073

Table A3
Comparation of computational cost per 200 steps.

Algorithm Time consumption (s) per 200 steps
HiRIL 6.50
HULA 6.18
IARL 6.32
TD3 6.08
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